Multigroup models

As an example, we will fit the model from the lavaan tutorial with loadings constrained to equality across groups.

We first load the example data. We have to make sure that the column indicating the group (here called school) is a vector of Symbols, not strings - so we convert it.

dat = example_data("holzinger_swineford")
dat.school = ifelse.(dat.school .== "Pasteur", :Pasteur, :Grant_White)

We then specify our model via the graph interface:

latent_vars = [:visual, :textual, :speed]
observed_vars = Symbol.(:x, 1:9)

graph = @StenoGraph begin
    # measurement model
    visual  → fixed(1, 1)*x1 + label(:λ₂, :λ₂)*x2 + label(:λ₃, :λ₃)*x3
    textual → fixed(1, 1)*x4 + label(:λ₅, :λ₅)*x5 + label(:λ₆, :λ₆)*x6
    speed   → fixed(1, 1)*x7 + label(:λ₈, :λ₈)*x8 + label(:λ₉, :λ₉)*x9
    # variances and covariances
    _(observed_vars) ↔ _(observed_vars)
    _(latent_vars)   ⇔ _(latent_vars)
end

You can pass multiple arguments to fix() and label() for each group. Parameters with the same label (within and across groups) are constrained to be equal. To fix a parameter in one group, but estimate it freely in the other, you may write fix(NaN, 4.3).

You can then use the resulting graph to specify an EnsembleParameterTable

groups = [:Pasteur, :Grant_White]

partable = EnsembleParameterTable(
    graph,
    observed_vars = observed_vars,
    latent_vars = latent_vars,
    groups = groups)
EnsembleParameterTable with groups: |Grant_White||Pasteur|
Grant_White: 
 --------- ---------- --------- ------- ------------- --------- ---------- -----
     from   relation        to    free   value_fixed     start   estimate       Symbol     Symbol    Symbol    Bool       Float64   Float64    Float64      ⋯
 --------- ---------- --------- ------- ------------- --------- ---------- -----
   visual          →        x1   false           1.0                           ⋯
   visual          →        x2    true                                         ⋯
   visual          →        x3    true                                         ⋯
  textual          →        x4   false           1.0                           ⋯
  textual          →        x5    true                                         ⋯
  textual          →        x6    true                                         ⋯
    speed          →        x7   false           1.0                           ⋯
    speed          →        x8    true                                         ⋯
    speed          →        x9    true                                         ⋯
       x1          ↔        x1    true                                       g ⋯
       x2          ↔        x2    true                                       g ⋯
       x3          ↔        x3    true                                       g ⋯
       x4          ↔        x4    true                                       g ⋯
       x5          ↔        x5    true                                       g ⋯
       x6          ↔        x6    true                                       g ⋯
     ⋮         ⋮          ⋮        ⋮          ⋮           ⋮         ⋮          ⋱
 --------- ---------- --------- ------- ------------- --------- ---------- -----
                                                     1 column and 9 rows omitted
Latent Variables:    [:visual, :textual, :speed] 
Observed Variables:  [:x1, :x2, :x3, :x4, :x5, :x6, :x7, :x8, :x9] 
Pasteur: 
 --------- ---------- --------- ------- ------------- --------- ---------- -----
     from   relation        to    free   value_fixed     start   estimate       Symbol     Symbol    Symbol    Bool       Float64   Float64    Float64      ⋯
 --------- ---------- --------- ------- ------------- --------- ---------- -----
   visual          →        x1   false           1.0                           ⋯
   visual          →        x2    true                                         ⋯
   visual          →        x3    true                                         ⋯
  textual          →        x4   false           1.0                           ⋯
  textual          →        x5    true                                         ⋯
  textual          →        x6    true                                         ⋯
    speed          →        x7   false           1.0                           ⋯
    speed          →        x8    true                                         ⋯
    speed          →        x9    true                                         ⋯
       x1          ↔        x1    true                                       g ⋯
       x2          ↔        x2    true                                       g ⋯
       x3          ↔        x3    true                                       g ⋯
       x4          ↔        x4    true                                       g ⋯
       x5          ↔        x5    true                                       g ⋯
       x6          ↔        x6    true                                       g ⋯
     ⋮         ⋮          ⋮        ⋮          ⋮           ⋮         ⋮          ⋱
 --------- ---------- --------- ------- ------------- --------- ---------- -----
                                                     1 column and 9 rows omitted
Latent Variables:    [:visual, :textual, :speed] 
Observed Variables:  [:x1, :x2, :x3, :x4, :x5, :x6, :x7, :x8, :x9] 

The parameter table can be used to create a SemEnsemble model:

model_ml_multigroup = SemEnsemble(
    specification = partable,
    data = dat,
    column = :school,
    groups = groups)
SemEnsemble 
- Number of Models: 2 
- Weights: [0.52, 0.48] 

Models: 
===============================================
---------------------- 1 ----------------------
Structural Equation Model 
- Loss Functions 
   SemML
- Fields 
   observed:    SemObservedData 
   implied:     RAM 
---------------------- 2 ----------------------
Structural Equation Model 
- Loss Functions 
   SemML
- Fields 
   observed:    SemObservedData 
   implied:     RAM 
A different way to specify

Instead of choosing the workflow "Graph -> EnsembleParameterTable -> model", you may also directly specify RAMMatrices for each group (for an example see this test).

We now fit the model and inspect the parameter estimates:

sem_fit = fit(model_ml_multigroup)
update_estimate!(partable, sem_fit)
details(partable)

--------------------------------- Variables --------------------------------- 

Latent variables:    visual textual speed
Observed variables:  x1 x2 x3 x4 x5 x6 x7 x8 x9


 Group: Grant_White                                                           

---------------------------- Parameter Estimates ----------------------------- 

Loadings: 

visual

  to   estimate   value_fixed   start   free   from     label   relation 

  x1   0.0        1.0                   0.0    visual   const   →
  x2   0.6                              1.0    visual   λ₂      →
  x3   0.78                             1.0    visual   λ₃      →

textual

  to   estimate   value_fixed   start   free   from      label   relation 

  x4   0.0        1.0                   0.0    textual   const   →
  x5   1.08                             1.0    textual   λ₅      →
  x6   0.91                             1.0    textual   λ₆      →

speed

  to   estimate   value_fixed   start   free   from    label   relation 

  x7   0.0        1.0                   0.0    speed   const   →
  x8   1.2                              1.0    speed   λ₈      →
  x9   1.04                             1.0    speed   λ₉      →

Directed Effects: 

  from       to   estimate   value_fixed   start   free   label 


Variances: 

  from          to        estimate   value_fixed   start   free   label           

  x1        ↔   x1        0.65                             1.0    gGrant_White_1
  x2        ↔   x2        0.94                             1.0    gGrant_White_2
  x3        ↔   x3        0.61                             1.0    gGrant_White_3
  x4        ↔   x4        0.33                             1.0    gGrant_White_4
  x5        ↔   x5        0.39                             1.0    gGrant_White_5
  x6        ↔   x6        0.44                             1.0    gGrant_White_6
  x7        ↔   x7        0.6                              1.0    gGrant_White_7
  x8        ↔   x8        0.41                             1.0    gGrant_White_8
  x9        ↔   x9        0.54                             1.0    gGrant_White_9
  visual    ↔   visual    0.73                             1.0    gGrant_White_10
  textual   ↔   textual   0.91                             1.0    gGrant_White_13
  speed     ↔   speed     0.48                             1.0    gGrant_White_15

Covariances: 

  from          to        estimate   value_fixed   start   free   label           

  textual   ↔   visual    0.44                             1.0    gGrant_White_11
  speed     ↔   visual    0.32                             1.0    gGrant_White_12
  speed     ↔   textual   0.23                             1.0    gGrant_White_14


 Group: Pasteur                                                               

---------------------------- Parameter Estimates ----------------------------- 

Loadings: 

visual

  to   estimate   value_fixed   start   free   from     label   relation 

  x1   0.0        1.0                   0.0    visual   const   →
  x2   0.6                              1.0    visual   λ₂      →
  x3   0.78                             1.0    visual   λ₃      →

textual

  to   estimate   value_fixed   start   free   from      label   relation 

  x4   0.0        1.0                   0.0    textual   const   →
  x5   1.08                             1.0    textual   λ₅      →
  x6   0.91                             1.0    textual   λ₆      →

speed

  to   estimate   value_fixed   start   free   from    label   relation 

  x7   0.0        1.0                   0.0    speed   const   →
  x8   1.2                              1.0    speed   λ₈      →
  x9   1.04                             1.0    speed   λ₉      →

Directed Effects: 

  from       to   estimate   value_fixed   start   free   label 


Variances: 

  from          to        estimate   value_fixed   start   free   label       

  x1        ↔   x1        0.55                             1.0    gPasteur_1
  x2        ↔   x2        1.27                             1.0    gPasteur_2
  x3        ↔   x3        0.89                             1.0    gPasteur_3
  x4        ↔   x4        0.44                             1.0    gPasteur_4
  x5        ↔   x5        0.51                             1.0    gPasteur_5
  x6        ↔   x6        0.27                             1.0    gPasteur_6
  x7        ↔   x7        0.85                             1.0    gPasteur_7
  x8        ↔   x8        0.52                             1.0    gPasteur_8
  x9        ↔   x9        0.66                             1.0    gPasteur_9
  visual    ↔   visual    0.81                             1.0    gPasteur_10
  textual   ↔   textual   0.92                             1.0    gPasteur_13
  speed     ↔   speed     0.31                             1.0    gPasteur_15

Covariances: 

  from          to        estimate   value_fixed   start   free   label       

  textual   ↔   visual    0.42                             1.0    gPasteur_11
  speed     ↔   visual    0.17                             1.0    gPasteur_12
  speed     ↔   textual   0.18                             1.0    gPasteur_14

Other things you can query about your fitted model (fit measures, standard errors, etc.) are described in the section Model inspection and work the same way for multigroup models.